CHARACTERIZATION OF THE SOLUTIONS OF INTERVAL SYSTEM OF LINEAR EQUATIONS OVER INTERVAL SUPERTROPICAL ALGEBRA

Dian Yuliati* -  UIN Sunan Ampel Surabaya, Indonesia
Suci Rahmawati -  Institut Sains dan Teknologi Nahdatul Ulama Bali, Indonesia

DOI : 10.24269/silogisme.v8i1.6945

Penelitian ini bertujuan untuk mediskusikan mengenai solusi dari sistem persamaan interval atas aljabar supertropical. Aljabar supertropical merupakan semiring komutatif dengan ghost. Sistem persamaan linear interval pada aljabar supertropical diberikan oleh persamaan matriks   dengan  adalah matriks interval  adalah vector interval, dan  merupakan vektor interval yang merupakan solusi dari system persamaan linear interval. Pada peneletian ini ditunjukkan syarat perlu dan syarat cukup dari solusi sistem persamaan linear interval serta ditunjukkan bahwa terdapat dua tipe solusi dari sistem persamaan linear interval atas aljabar supertropical
Keywords
Solution, Interval System of Linear Equation, Interval Supertropical Algebra
  1. Akian, M., Cohen, G., Gaubert, S., Nikoukhah, R., & Quadrat, J. P. (1990). Linear systems in (max, +) algebra. Proceedings of the IEEE Conference on Decision and Control, 1(2 1), 151–156. https://doi.org/10.1109/cdc.1990.203566
  2. Izhakian, Z. (2019). Commutative $nu$-algebra and supertropical algebraic geometry. 1–83.
  3. Izhakian, Z., & Rowen, L. (2010a). A guide to supertropical algebra. Trends in Mathematics, 49, 283–302. https://doi.org/10.1007/978-3-0346-0286-0_19
  4. Izhakian, Z., & Rowen, L. (2010b). Supertropical algebra. Advances in Mathematics, 225(4), 2222–2286. https://doi.org/10.1016/j.aim.2010.04.007
  5. Izhakian, Z., & Rowen, L. (2011a). Supertropical matrix algebra. Israel Journal of Mathematics, 182(1), 383–424.
  6. https://doi.org/10.1007/s11856-011-0036-2
  7. Izhakian, Z., & Rowen, L. (2011b). Supertropical matrix algebra III: Powers of matrices and their supertropical eigenvalues. Journal of Algebra, 341(1), 125–149. https://doi.org/10.1016/j.jalgebra.2011.06.002
  8. Jones, D. (2021). Matrix roots in the max-plus algebra. Linear Algebra and Its Applications, 631, 10–34. https://doi.org/10.1016/j.laa.2021.08.008
  9. Komenda, J., Lahaye, S., Boimond, J. L., & van den Boom, T. (2017). Max-Plus Algebra and Discrete Event Systems. IFAC-PapersOnLine, 50(1), 1784–1790. https://doi.org/10.1016/j.ifacol.2017.08.163
  10. Kurniawan, A., Suparwanto, A. R. I., & Max-plus, A. (2020). sistem persamaan linear max-plus dan terapannya pada sistem jaringan kereta api ( max-plus linear equation system and its application on railway network system ). 02(01), 63–77.
  11. Myšková, H. (2005). Interval systems of max-separable linear equations. Linear Algebra and Its Applications, 403(1–3), 263–272. https://doi.org/10.1016/j.laa.2005.02.011
  12. Myšková, H. (2012). Interval max-plus systems of linear equations. Linear Algebra and Its Applications, 437(8), 1992–2000. https://doi.org/10.1016/j.laa.2012.04.051
  13. Niv, A. (2015). On pseudo-inverses of matrices and their characteristic polynomials in supertropical algebra. In Linear Algebra and Its Applications (Vol. 471, pp. 264–290). https://doi.org/10.1016/j.laa.2014.12.038
  14. Rudhito, M. A., Wahyuni, S., Suparwanto, A., & Susilo, F. (2012). Matriks atas Aljabar Max-Plus Interval. Jurnal Natur Indonesia, 13(2), 94. https://doi.org/10.31258/jnat.13.2.94-99
  15. Wang, L., Li, W., & Li, H. (2018). AE solutions to two-sided interval linear systems over max-plus algebra. Journal of Inequalities and Applications, 2018, 1–13. https://doi.org/10.1186/s13660-018-1869-6
  16. Yuliati, D. (2016). Characterization of The Solution of Non Homogeneous System of Linear Equations Over Supertropical Algebra. 321–325.

Full Text:
Article Info
Submitted: 2023-03-29
Published: 2023-06-08
Section: Artikel
Article Statistics: